Collision Frequencies of Fractal Aggregates with Small Particles by Differential Sedimentation

ثبت نشده
چکیده

Two groups of aggregates with fractal dimensions of 1.81 ( 0.09 and 2.33 ( 0.07 were generated by coagulation of latex microspheres (2.84 μm) in a Jar-test (paddle-mixing) device. The collision rates between these fractal aggregates (200-1000 μm) and small (1.48 μm) particles were measured for individual aggregates that had settled through a suspension of the small particles. Aggregate permeabilities calculated from measured settling velocities were 3 orders of magnitude greater than predicted by a permeability model based on a homogeneous distribution of primary particles within the aggregates. Collision frequencies were 1 order of magnitude higher than predicted by a curvilinear model and about 2 orders of magnitude lower than predicted by a rectilinear collision model. The capture efficiencies of small particles by settling aggregates were <0.2% based on the total volume of water swept out by an aggregate. Fluid collection efficiencies, collision frequencies, and particle capture efficiencies of the fractal aggregates decreased with the magnitude of fractal dimensions. A fractal permeability model was developed by modifying the Brinkman correlation to describe the permeability as a function of aggregate size. This model was used in conjunction with a filtration model to predict capture rates and capture efficiencies of small particles by settling fractal aggregates. Based on these experiments and models, it is argued that the high aggregate permeabilities and the low overall particle capture efficiencies of fractal aggregates can be explained by flow through macropores formed between large clusters within the aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of fractal properties of different layers sedimentation behind the check dam

In this research, fractal relationships were used to evaluate the particle size distribution of the check dam. Three check dams with height of 2, 2 and 2.6 meters were selected and the hole was drilled same the height of the check dam at the sediment deposits. Then, depending on the color of the deposited layers, the thickness of the layers was determined and sampling was down from each layer t...

متن کامل

Pedotransfer functions for estimating soil moisture content using fractal parameters in Ardabil province

Extended abstract 1- Introduction Soil moisture curve is an important characteristic of soil and its measurement is necessary for determining soil available water content for plant, evapotranspiration and irrigation planning. Direct measurements of soil moisture coefficients are time-consuming and costly. But it is possible to estimate these characteristics from readily available soil propert...

متن کامل

Theory of growth by differential sedimentation, with application to snowflake formation.

A simple model of irreversible aggregation under differential sedimentation of particles in a fluid is presented. The structure of the aggregates produced by this process is found to feed back on the dynamics in such a way as to stabilize both the exponents controlling the growth rate, and the fractal dimension of the clusters produced at readily predictable values. The aggregation of ice cryst...

متن کامل

Aggregate formation and collision efficiency in differential settling.

A new method of application of Stokesian dynamics, which can efficiently simulate movements of up to 500 particles with interparticle interactions in reasonable computational times, has been developed for the purpose of investigating particle-cluster aggregation in aqueous systems. The method is applied to monodisperse non-Brownian spherical particles aggregating in differential settling, while...

متن کامل

M ay 2 00 7 Coalescence of particles by differential sedimentation

We consider a three dimensional system consisting of a large number of small spherical particles, distributed in a range of sizes and heights (with uniform distribution in the horizontal direction). Particles move vertically at a size-dependent terminal velocity. They are either allowed to merge whenever they cross or there is a size ratio criterion enforced to account for collision efficiency....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997